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Abstract

An inverse algorithm for biotechnology problem utilizing the conjugate gradient method is applied in the present

study in determining the unknown spatial-dependent optical diffusion and absorption coefficients of the biological

tissue based on irradiance and temperature measurements. The accuracy of this inverse problem is examined by using

the simulated exact and inexact irradiance and temperature measurements in the numerical experiments. Results show

that the estimation on the spatial-dependent diffusion and absorption coefficients can be obtained with any arbitrary

initial guesses on a Pentium IV 1.4 GHz personal computer for the test cases considered in the present study.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Lasers application in medicine, such as surgery,

therapy and ophthalmology, emerged rapidly during the

recent 20 years. For instance, small, unresectable tumors

can be destroyed thermally using interstitial laser heat-

ing. This minimally invasive technique involves coupling

laser energy to optical fibers implanted percutaneously

in a tumor volume. Dowlatshahi et al. [1] and Amin et al.

[2] used this kind of technique clinically. However the

phenomena of radiation–tissue interaction is studied

insufficiently.

As with most cancer therapy techniques, the purpose

is to destroy a targeted tumor using interstitial laser

heating while sparing surrounding normal biological

tissue. This implies that thermal control is very impor-

tant during the process. The temperature distribution of

the tissue during laser heating depends on a heat gen-

eration term, which was induced by the product of ir-

radiance and optical absorption coefficient of tissue.

Meanwhile, based on the optical propagation equation

[3], the irradiance of tissue depends on both optical
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diffusion and absorption coefficients. For this reason the

determination of those two optical properties of tissue

becomes important.

The direct biotechnology problems for optical prop-

agation and heat transfer equations are concerned with

the determination of irradiance and temperature of tis-

sue when the initial and boundary conditions as well

as thermophysical and optical properties of tissue are

all specified. In contrast, the inverse biotechnology

problem considered here involves the determination of

the unknown spatial-dependent optical diffusion and

absorption coefficients in a biological tissue from the

knowledge of the irradiance and temperature measure-

ments taken within the tissue.

The technique of conjugate gradient method (CGM)

[4] has been shown its potential for solving many kinds

of inverse problems and has been applied to many dif-

ferent applications. For instance, Huang and Chen [5]

used boundary element method and conjugate gradient

method to estimate the boundary heat fluxes for an ir-

regular domain. Huang and Wang [6] used CGM in

estimating surface heat fluxes for a three-dimensional

inverse heat conduction problem. Huang and Chen [7]

used same technique in estimating surface heat fluxes for

a three-dimensional inverse heat convection problem.

Huang and Chin [8] used CGM in a two-dimensional

inverse problem of imaging the thermal conductivity of
ed.
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Nomenclature

CðrÞ effective volumetric heat capacity

DðrÞ optical diffusion coefficient

J1, J2 functional defined by Eqs. (3a) and (3b)

J 0
1, J

0
2 gradient of functional defined by Eqs. (18)

and (20)

kðrÞ effective thermal conductivity

P1, P2 direction of descent defined by Eqs. (5a) and

(5b)

QðrÞ heat generation rate by laser irradiation

r dimensionless coordinate

S point optical source

t dimensionless time

T ðr; tÞ estimated dimensionless temperature

Y ðr; tÞ measured dimensionless temperature

Greek symbols

b1, b2 search step sizes

c1, c2 conjugate coefficients

dð�Þ Dirac delta function

k1ðr; tÞ, k2ðrÞ Lagrange multipliers defined by Eqs.

(15) and (19)

laðrÞ optical absorption coefficient

/ðrÞ estimated dimensionless irradiance

UðrÞ measured dimensionless moisture

DT , D/ direct problem in variations defined by Eqs.

(7) and (11)

g1, g2 convergence criteria

Superscript

n iteration index
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a non-homogeneous medium. Huang [9] applied the

CGM in a non-linear inverse vibration problem in esti-

mating the unknown external forces for a system with

displacement-dependent parameters. However, the in-

verse biotechnology problem in determining the optical

properties for biological tissue is very limited in the lit-

erature.

The conjugate gradient method derives its basis from

the variational principles [4] and transforms the original

direct problem to the solution of two subproblems,

namely, the direct problem in variations and the adjoint

problem, which will be discussed in detail in this study.

2. Direct problem

To illustrate the methodology for developing ex-

pressions for use in determining two unknown spatial-

dependent optical diffusion and absorption coefficients

for a biological tissue, we consider the following physical

problem. A tissue of radius �rr0 in cylindrical coordinate is

subjected to a constant irradiance �//ð�rr0Þ at outer

boundary. Initially the temperature of the tissue is equal

to T ð�rr; 0Þ. For time t > 0, the boundary surface at �rr0 is

subjected to a constant temperature T ð�rr0;�ttÞ.
In order to obtain the dimensionless optical propa-

gation and heat transfer equations, the following di-

mensionless quantities should be defined

r ¼ �rr
�rr0
; /ðrÞ ¼

�//ð�rrÞ
�//r

; DðrÞ ¼ Dð�rrÞ
Dr

; laðrÞ ¼
�rr20�llað�rrÞ
Dr

;

kðrÞ ¼
�kkð�rrÞ
�kkr

; T ðr; tÞ ¼ T ð�rr;�ttÞ
T r

; CðrÞ ¼ Cð�rrÞ
Cr

; S ¼ �rr20S

Dr
�//r

;

QðrÞ ¼ laðrÞ/ðrÞ ¼
�rr20Qð�rrÞ
�kkrT r

; t ¼
�kkr�tt

Cr�rr20
here / is the irradiance, D and la represent the optical

diffusion and absorption coefficients, respectively, k and

C denote the effective thermal conductivity and volu-

metric heat capacity, respectively, T is the temperature,

S and Q represent the point optical source and heat

generation rate by laser irradiation, respectively, and t
denotes the dimensionless time. The subscript r repre-

sents the reference quantity.

The dimensionless formulations for optical propa-

gation equation and heat transfer equation can be ex-

pressed as:

� 1

r2
d

dr
r2DðrÞ d/ðrÞ

dr

� �
þ laðrÞ/ðrÞ ¼ SdðrÞ;

in 06 r6 1 ð1aÞ

d/ðrÞ
dr

¼ 0; at r ¼ 0 ð1bÞ

/ ¼ /ð1Þ; at r ¼ 1 ð1cÞ

and

1

r2
o

or
r2kðrÞ oT ðr; tÞ

or

� �
þ laðrÞ/ðrÞ ¼ CðrÞ oT ðr; tÞ

ot
;

in 06 r6 1; t > 0 ð2aÞ

oT ðr; tÞ
or

¼ 0; at r ¼ 0 ð2bÞ

T ¼ T ð1; tÞ; at r ¼ 1 ð2cÞ

T ¼ T ðr; 0Þ; for t ¼ 0 ð2dÞ

Here dð�Þ is the Dirac delta function. The direct prob-

lems considered here are concerned with calculating the

tissue’s irradiance and temperature when the optical

diffusion and absorption coefficients, DðrÞ and laðrÞ,
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thermal properties and initial and boundary condi-

tion are known. The Crank–Nicolson finite difference

method can be used to solve these direct problems.

3. Inverse problem

For the inverse problem considered here, the optical

diffusion and absorption coefficients, DðrÞ and laðrÞ, are
regarded as being unknown, but everything else in Eqs.

(1) and (2) is known. In addition, the measured irradi-

ance and temperature distributions within the space

domain are considered available from the techniques of

non-contact measurements.

It is obvious that the undetermined coefficients DðrÞ
and laðrÞ both appear in Eq. (1), however, it is impos-

sible to use only Eq. (1) to estimate simultaneously for

DðrÞ and laðrÞ. For this reason Eq. (2) is needed in this

study. The sequence of the present inverse problem is as

follows:

(a) Estimate QðrÞ from Eq. (2) using measured temper-

ature distribution, here QðrÞ ¼ laðrÞ/ðrÞ.
(b) Estimate DðrÞ from Eq. (1) using the estimated QðrÞ

and the measured irradiance distribution.

(c) Once DðrÞ is obtained, /ðrÞ can also be determined.

Therefore laðrÞ is obtainable using QðrÞ ¼ laðrÞ/ðrÞ.

Let the measured irradiance at position r be denoted
by UðrÞ, the measured temperature at position r and time

t be denoted by Y ðr; tÞ. Then this inverse problem can be

stated as follows: by utilizing the above mentioned

measured temperature and irradiance data Y ðr; tÞ and

UðrÞ, estimate the unknown diffusion coefficient, DðrÞ,
and heat generation rate by laser irradiation, QðrÞ, over
the specified space domain. Finally the absorption coef-

ficient laðrÞ can be calculated using QðrÞ ¼ laðrÞ/ðrÞ.
The solutions of the present inverse problem are to be

obtained in such a way that the following two func-

tionals are minimized:

J1½QðrÞ� ¼
Z 1

r¼0

Z tf

t¼0

r2½T ðr; tÞ � Y ðr; tÞ�2 dtdr ð3aÞ

J2½DðrÞ� ¼
Z 1

r¼0

r2½/ðrÞ � UðrÞ�2 dr ð3bÞ

Here T ðr; tÞ and /ðrÞ are the estimated (or computed)

temperature and irradiance. These quantities are deter-

mined from the solution of the direct problems given

previously by using the estimated diffusion coefficient

DðrÞ and heat generation rate by laser irradiation, QðrÞ.
4. Conjugate gradient method for minimization

The following iterative process based on the conju-

gate gradient method [4] is now used for the estimation
of diffusion coefficient DðrÞ and heat generation rate by

laser irradiation QðrÞ by minimizing the above two

functionals J1½QðrÞ� and J2½DðrÞ�:

Qnþ1ðrÞ ¼ QnðrÞ � bn
1P

n
1 ðrÞ n ¼ 0; 1; 2; . . . ð4aÞ

Dnþ1ðrÞ ¼ DnðrÞ � bn
2P

n
2 ðrÞ n ¼ 0; 1; 2; . . . ð4bÞ

where bn
1 and bn

2 are the search step sizes in going from

iteration n to iteration nþ 1, and Pn
1 ðrÞ and Pn

2 ðrÞ are the
directions of descent (i.e. search directions) given by

Pn
1 ðrÞ ¼ J 0n

1 ðrÞ þ cn1P
n�1
1 ðrÞ ð5aÞ

Pn
2 ðrÞ ¼ J 0n

2 ðrÞ þ cn2P
n�1
2 ðrÞ ð5bÞ

which is a conjugation of the gradient directions J 0n
1 ðrÞ

and J 0n
2 ðrÞ at iteration n and the directions of descent

Pn�1
1 ðrÞ and Pn�1

2 ðrÞ at iteration n� 1. The conjugate

coefficient is determined from

cn1 ¼
R 1

r¼0
½J 0n

1 ðrÞ�
2
drR 1

r¼0
½J 0n�1

1 ðrÞ�2 dr
with c01 ¼ 0 ð6aÞ

cn2 ¼
R 1

r¼0
½J 0n

2 ðrÞ�
2
drR 1

r¼0
½J 0n�1

2 ðrÞ�2 dr
with c02 ¼ 0 ð6bÞ

To perform the iterations according to Eqs. (4), we

need to compute the step sizes bn
1 and bn

2 and the gra-

dients of the functionals J 0n
1 ðrÞ and J 0n

2 ðrÞ. In order to

develop expressions for the determination of these two

quantities, two direct problems in variations and two

adjoint problems are constructed as described below.
5. Direct problem in variations and search step sizes

Firstly, it is assumed that when QðrÞ undergoes a

variation DQðrÞ, T ðr; tÞ is perturbed by DT ðr; tÞ. Then
replacing in the direct problem QðrÞ by QðrÞ þ DQðrÞ,
T ðr; tÞ by T ðr; tÞ þ DT ðr; tÞ, subtracting from the result-

ing expressions the direct problem and neglecting the

second-order terms, the following direct problem in

variations for the function DT ðr; tÞ is obtained.
1

r2
o

or
r2kðrÞ oDT ðr; tÞ

or

� �
þ DQðrÞ ¼ CðrÞ oDT ðr; tÞ

ot
;

in 06 r6 1; t > 0 ð7aÞ

oDT ðr; tÞ
or

¼ 0; at r ¼ 0 ð7bÞ

DT ¼ 0; at r ¼ 1 ð7cÞ

DT ¼ 0; for t ¼ 0 ð7dÞ

We should note that the above direct problem in vari-

ations could also be solved by Crank–Nicolson finite

difference method.
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The functional J1½QðrÞ� for iteration nþ 1 is obtained

by rewriting Eq. (3a) as

J1½Qnþ1ðrÞ� ¼
Z 1

r¼0

Z tf

t¼0

r2½T ðr; t;Qn � bn
1P

n
1 Þ

� Y ðr; tÞ�2 dtdr ð8Þ

where we replaced Qnþ1ðrÞ by the expression given by

Eq. (4a).

If the estimated temperatures T ðr; t;Qn � bn
1P

n
1 Þ are

linearized by a Taylor expansion, Eq. (8) takes the

form:

J1½Qnþ1ðrÞ� ¼
Z 1

r¼0

Z tf

t¼0

r2½T ðr; t;QnÞ � bn
1DT ðPn

1 Þ

� Y ðr; tÞ�2 dtdr ð9Þ

where T ðr; t;QnÞ is the solution of the direct problem by

using estimate QðrÞ.
The function DT ðPn

1 Þ is taken as the solutions of

problem (7) by letting DQðrÞ ¼ Pn
1 ðrÞ in Eq. (7a).

Eq. (9) is differentiated with respect to bn
1 and

equating it equal to zero to obtain the following search

step size bn
1:

bn
1 ¼

R 1

r¼0

R tf
t¼0

r2ðT � Y ÞDT drdtR 1

r¼0

R tf
t¼0

r2DT 2 drdt
ð10Þ

Similarly, by perturbing DðrÞ with DDðrÞ, the second

direct problem in variations can be obtained as

1

r2
d

dr
r2DðrÞdD/

dr

� �
þ 1

r2
d

dr
r2DDðrÞd/

dr

� �
¼ 0;

in 06 r6 1 ð11aÞ

dD/ðrÞ
dr

¼ 0; at r ¼ 0 ð11bÞ

D/ ¼ 0; at r ¼ 1 ð11cÞ

and the search step size bn
2 is obtained as

bn
2 ¼

R 1

r¼0
r2ð/� UÞD/drR 1

r¼0
r2D/2 dr

ð12Þ
6. Adjoint problems and gradient equations

To obtain the adjoint problem for heat transfer

equation, Eq. (2a) is multiplied by the Lagrange multi-

plier (or adjoint function) k1ðr; tÞ and the resulting ex-

pression is integrated over the time and correspondent

space domains. Then the result is added to the right

hand side of Eq. (3a) to yield the following expression

for the functional J1½QðrÞ�:
J1½QðrÞ� ¼
Z 1

r¼0

Z tf

t¼0

r2½T ðr; tÞ � Y ðr; tÞ�2 dtdr

þ
Z 1

r¼0

Z tf

t¼0

k1ðr; tÞ
1

r2
o

or
r2kðrÞ oT ðr; tÞ

or

� ��
þ QðrÞ � CðrÞ oT ðr; tÞ

ot

�
dtdr ð13Þ

Firstly, the variation DJ1 is obtained by perturbing

QðrÞ by QðrÞ þ DQðrÞ and T ðr; tÞ by T ðr; tÞ þ DT ðr; tÞ in
Eq. (13), subtracting from the resulting expression the

original Eq. (13) and neglecting the second-order terms.

We thus find

DJ1½QðrÞ� ¼
Z 1

r¼0

Z tf

t¼0

r22½T ðr; tÞ � Y ðr; tÞ�DT dtdr

þ
Z 1

r¼0

Z tf

t¼0

k1ðr; tÞ
1

r2
o

or
r2kðrÞ oDT ðr; tÞ

or

� ��
þ DQðrÞ � CðrÞ oDT ðr; tÞ

ot

�
dtdr ð14Þ

In Eq. (14), the second double integral term is inte-

grated by parts; the initial and boundary conditions of

the direct problem in variations are utilized. The van-

ishing of the integrands leads to the following adjoint

problem for the determination of k1ðr; tÞ:

1

r2
o

or
r2kðrÞ ok1ðr; tÞ

or

� �
þ 2ðT � Y Þ þ CðrÞ ok1ðr; tÞ

ot
¼ 0;

in 06 r6 1; t > 0 ð15aÞ

ok1ðr; tÞ
or

¼ 0; at r ¼ 0 ð15bÞ

k1ðr; tÞ ¼ 0; at r ¼ 1 ð15cÞ

k1ðr; tÞ ¼ 0; for t ¼ tf ð15dÞ

Finally, the following integral term is left

DJ1 ¼
Z 1

r¼0

DQðrÞ
Z tf

t¼0

k1ðr; tÞdtdr ð16Þ

From definition [4], the general structure of the re-

sidual functional variation in the Hilbert space L2 can

be presented as the functional increment and can be

presented as

DJ1 ¼
Z 1

r¼0

DQðrÞJ 0
1ðrÞdr ð17Þ

A comparison of Eqs. (16) and (17) leads to the fol-

lowing expression for the gradient of functional J 0
1:

J 0
1ðrÞ ¼

Z tf

t¼0

k1ðr; tÞdt ð18Þ

The adjoint problem for k1ðr; tÞ is different from the

standard initial value problems in that the final time

condition at time t ¼ tf is specified instead of the cus-
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tomary initial condition. However, this problem can be

transformed to an initial value problem by the trans-

formation of the time variable as t� ¼ tf � t. Then the

techniques of Crank–Nicolson finite difference method

can be used to solve the above adjoint problem.

We note that J 0
1ðrÞ is always equal to zero at r ¼ 1

since k1ð1; tÞ ¼ 0:0, therefore if the value of Qð1Þ cannot
be predicted accurately before the inverse calculations,

the estimated values of QðrÞ will deviate from exact

values near r ¼ 1. However, if we let k1ð1; tÞ ¼
k1ð1� Dr; tÞ, where Dr denotes the space increment for

use in finite difference calculation, the singularity at

r ¼ 1 can be avoided in the present study and a reliable

inverse solutions can be obtained.

Similarly, to derive the adjoint problem for the op-

tical propagation equation, Eq. (1a) is multiplied by the

Lagrange multiplier (or adjoint function) k2ðrÞ and

follow the same procedure as described previously.

Eventually the adjoint equation can be derived as fol-

lows

1

r2
d

dr
r2DðrÞ dk2

or

� �
þ 2ð/� UÞ ¼ 0 in 06 r6 1 ð19aÞ

dk2ðrÞ
dr

¼ 0; at r ¼ 0 ð19bÞ

k2ðrÞ ¼ 0; at r ¼ 1 ð19cÞ

and the gradient equation is as follows

J 0
2ðrÞ ¼

dk2
dr

d/
dr

ð20Þ

We note that J 0
2ðrÞ is always equal to zero since

dk2
dr ¼ d/

dr ¼ 0 at r ¼ 0. With this fact and Eqs. (4b), (5b)

and (6b) we concluded that the estimated value for Dð0Þ
is definitely equal to the value of its initial guess and the

estimated values for DðrÞ will also deviate from the exact

values near r ¼ 0.

However, if we let dk2ð0Þ
dr ¼ dk2ðDrÞ

dr and d/ð0Þ
dr ¼ d/ðDrÞ

dr , the

singularity at r ¼ 0 can be avoided in the present study

and a reliable inverse solutions can be obtained. We will

show this by using numerical experiments in Section 9.
7. Stopping criterion

If the problem contains no measurement errors, the

traditional check condition can be specified as

J1½QðrÞ� < g1 ð21aÞ

J2½DðrÞ� < g2 ð21bÞ

where g1 and g2 are the small-specified numbers. How-

ever, the measured temperature and irradiance data may

contain measurement errors. Therefore, we do not ex-

pect the functional equations (3a) and (3b) to be equal to

zero at the final iteration step.
Following the rigorous justification by Alifanov et al.

[10], we use the discrepancy principle as the stopping

criterion, i.e. we assume that the residuals for tempera-

ture and irradiance may be approximated by

jT ðr; tÞ � Y ðr; tÞj � r1 ð22aÞ

j/ðrÞ � UðrÞj � r2 ð22bÞ

where r1 and r2 are the standard deviations of the

measurements, which are assumed to be constant.

By substituting Eqs. (22a) and (22b) into Eqs. (3a)

and (3b), respectively, the following expressions are

obtained for g1 and g2:

g1 ¼
1

3
r2
1tf ð23aÞ

g2 ¼
1

3
r2
2 ð23bÞ

Then, the stopping criterion is given by Eqs. (21a) and

(21b) with g1 and g2 determined from Eqs. (23a) and

(23b), respectively.
8. Computational procedure

The computational procedure for the solution of this

inverse biotechnology problem may be summarized as

follows:

First stage: Assign an initial guess for Q0ðrÞ.

Step 1 Solve the direct heat transfer problem given by

Eq. (2a) for T ðr; tÞ.
Step 2 Solve the adjoint problem given by Eq. (15) for

k1ðr; tÞ.
Step 3 Compute the gradient of the functional J 0

1½QðrÞ�
from Eq. (18).

Step 4 Compute the conjugate coefficients cn1 and the di-

rection of descent Pn
1 ðrÞ from Eqs. (6a) and (5a),

respectively.

Step 5 Set DQðrÞ ¼ Pn
1 ðrÞ and solve the direct problem

in variations given by Eq. (7) for DT ðPn
1 Þ.

Step 6 Compute the search step size bn
1 from Eq. (10).

Step 7 Compute the new estimation for Qnþ1ðrÞ from

Eq. (4a).

Step 8 Examine the stopping criterion g1. Continue if

not satisfied.

Second stage: Assign an initial guess for D0ðrÞ.

Step 1 Solve the direct heat transfer problem given by

Eq. (1a) for /ðrÞ.
Step 2 Solve the adjoint problem given by Eq. (19) for

k2ðrÞ.
Step 3 Compute the gradient of the functional J 0

2½DðrÞ�
from Eq. (20).
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Step 4 Compute the conjugate coefficients cn2 and the di-

rection of descent Pn
2 ðrÞ from Eqs. (6b) and (5b),

respectively.

Step 5 Set DDðrÞ ¼ Pn
2 ðrÞ and solve the direct problem

in variations given by Eq. (11) for D/ðPn
2 Þ.

Step 6 Compute the search step size bn
2 from Eq. (12).

Step 7 Compute the new estimation for Dnþ1ðrÞ from

Eq. (4b).

Step 8 Examine the stopping criterion g2. Continue if

not satisfied.
9. Results and discussion

The objective of this study is to show the validity of the

CGM in simultaneously estimating the spatial-dependent

optical absorption and diffusion coefficients, laðrÞ and

DðrÞ, for tissue with no prior information on the func-

tional form of the unknown quantities.

Two numerical examples, with different functional

form for laðrÞ and DðrÞ, will be examined to illustrate

the accuracy of the present algorithm in the inverse

biotechnology problems based on the knowledge of

measured temperature and irradiance distributions. As

was mentioned previously, to estimate laðrÞ we need to

estimate QðrÞ first, for this reason the role of laðrÞ is

replaced by QðrÞ.
One of the advantages of using the conjugate gradi-

ent method is that the initial guesses of the unknown

functions QðrÞ and DðrÞ can be chosen arbitrarily. In all

the test cases considered here, the initial guesses of QðrÞ
and DðrÞ used to begin the iteration are taken as

Q0ðrÞ ¼ D0ðrÞ ¼ 1:0.
In order to compare the results for situations in-

volving random measurement errors, we assume nor-

mally distributed uncorrelated errors with zero mean

and constant standard deviation. The simulated inexact

measured temperature and irradiance Y ðr; tÞ and UðrÞ,
can be expressed as

Y ¼ Yexact þ xr1 ð24aÞ

U ¼ Uexact þ xr2 ð24bÞ

where Yexact and Uexact are the solutions of the direct

problem with the exact values for laðrÞ and DðrÞ; r1 and

r2 are the standard deviations of the temperature and

irradiance measurements, respectively; and x is a ran-

dom variable that generated by subroutine DRNNOR

of the IMSL [11] and will be within )2.576 to 2.576 for a

99% confidence bound.

The procedures in obtaining Yexact and Uexact are as

follows:

(a) From Eq. (1a), use exact laðrÞ and DðrÞ to calculate

irradiance /ðrÞ, which is assigned as Uexact.
(b) Once /ðrÞ is calculated, from Eq. (2a) use QðrÞ ¼
laðrÞ/ðrÞ to calculate temperature T ðr; tÞ, which is

assigned as Yexact.

We now present below two numerical experiments in

determining QðrÞ (or laðrÞ) and DðrÞ by the inverse

analysis:

9.1. Numerical test case 1

The parameters for the direct problem are given as

follows:

S ¼ 100:0; kðrÞ ¼ 0:005; CðrÞ ¼ 4:5;

/ð1Þ ¼ 1:0; T ð1; tÞ ¼ 0:1; T ðr; 0Þ ¼ 0:0; tf ¼ 1:0

Besides, the space and time increments used in nu-

merical calculations are taken as Dr ¼ 0:01 and Dt ¼
0:001 for a total time tf ¼ 1:0, respectively. Therefore a

total of 202 unknown discreted coefficients are to be

determined in this study.

The exact spatial-dependent optical absorption and

diffusion coefficients, laðrÞ and DðrÞ, for tissue are as-

sumed as

laðrÞ ¼ 5þ 2 cosð3prÞ; 0 < r6 1 ð25aÞ

DðrÞ ¼ 5þ 16r2; 0 < r6 1 ð25bÞ

One should note that in the present test case we use

initial guess Q0ðrÞ ¼ D0ðrÞ ¼ 1:0, but now the exact

values of Qð1Þ and Dð0Þ are not equal to unity, there-

fore we concluded that the singularity near boundary

r ¼ 0 and 1 for the estimation of DðrÞ and QðrÞ will be
happened in the present study. However, if the modi-

fied conditions are used as mentioned previously, the

estimation for Qð1Þ and Dð0Þ can be improved signifi-

cantly.

The inverse analysis is firstly performed in estimating

QðrÞ by assuming exact measurements, r1 ¼ 0:0. By

setting g1 ¼ 3� 10�9, after seven iterations the func-

tional can be decreased to J1 ¼ 2:56� 10�9. The mea-

sured and estimated temperatures, Y and T , are shown

in Fig. 1 while the exact and estimated QðrÞ are shown in

Fig. 2. It can be seen from Figs. 1 and 2 that there is a

good agreement between the measured and estimated

temperatures and the exact and estimated QðrÞ.
The average errors for estimated temperature T ðr; tÞ

and estimated QðrÞ are calculated as ERR1 ¼ 0:024%
and ERR2 ¼ 0:036%, respectively, where the average

errors for the estimated T ðr; tÞ and QðrÞ are defined as

ERR1% ¼
X100
J¼1

X101
I¼1

T ðI ; JÞ � Y ðI ; JÞ
T ðI ; JÞ

���� ����
" #,

10100

� 100%

ð26aÞ



0 0.2 0.4 0.6 0.8 1

0

0.04

0.08

0.12

0.16

Dimensionless  radius , r

0

 T
em

pe
ra

tu
re

 , 
T

t=0.1

t=0.08

t=0.06

t=0.04

t=0.02

estimated
measured

Fig. 1. The measured and estimated temperature distributions

using exact measurements in test case 1.
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Fig. 2. The exact and estimated volumetric heat generation

using exact measurements in test case 1.
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Fig. 3. The measured and estimated irradiance distributions

using exact measurements in test case 1.
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Fig. 4. The exact and estimated diffusion coefficient using exact

measurements in test case 1.
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ERR2% ¼
X101
I¼1

bQQðIÞ � QðIÞ
QðIÞ

�����
�����

" #,
101� 100% ð26bÞ

here I and J represent the index of discreted space and

time, while bQQðIÞ denotes the estimated value.
Once QðrÞ is estimated, the inverse calculation in then

proceeded to the second stage, i.e. the estimation of

DðrÞ. By assuming exact measurements, r2 ¼ 0:0 and by

setting g2 ¼ 1� 10�11, after 178 iterations the functional

can be decreased to J2 ¼ 8:77� 10�12. The measured

and estimated irradiances, U and /, are shown in Fig. 3

while the exact and estimated DðrÞ are shown in Fig. 4.
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Fig. 6. The exact and estimated volumetric heat generation

using inexact measurements in test case 1.
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It can be seen from Fig. 3 that there is a good agreement

between the measured and estimated irradiance. More-

over, from Fig. 4 we learn that the estimations for DðrÞ
are very accurate except near r ¼ 0 due to the singularity

addressed previously.

The average errors for estimated irradiance /ðrÞ and
estimated DðrÞ are calculated as ERR3 ¼ 0:00072% and

ERR4 ¼ 0:24%, respectively, where the average errors

for the estimated /ðr; tÞ and DðrÞ are defined as

ERR3% ¼
X101
I¼1

/ðIÞ � UðIÞ
/ðIÞ

���� ����
" #,

101� 100% ð26cÞ

ERR4% ¼
X101
I¼1

bDDðIÞ � DðIÞ
DðIÞ

�����
�����

" #,
101� 100% ð26dÞ

here I indicates the index of discreted space and bDDðIÞ
denotes the estimated value.

The inverse estimation of diffusion coefficient indi-

cates that its value is not sensitive to the irradiance since

ERR3 is very small, i.e. the difference between the

measured and calculated irradiance is very small, but

ERR4 is not that small. It is because that the role of

diffusion coefficient in effecting the irradiance for steady

state problem is insignificance.

Finally the optical absorption coefficient laðrÞ can be

obtained by using laðrÞ ¼ QðrÞ=/ðrÞ and the result is

shown in Fig. 5. The average errors for estimated ab-
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Fig. 5. The exact and estimated absorption coefficient using

exact measurements in test case 1.
sorption coefficient laðrÞ is calculated as ERR5 ¼
0:039%, where the average error ERR5 is defined as

ERR5% ¼
X101
I¼1

laðIÞ � l̂laðIÞ
laðIÞ

�����
�����

" #,
101� 100% ð26eÞ

here I indicates the index of discreted space and l̂laðIÞ
denotes the estimated value.

Next, let us discuss the influence of the measurement

errors on the inverse solutions. The measurement error

for the temperature and irradiance are taken as

r1 ¼ 5� 10�4 (about 1% of the average measured tem-

perature) and r2 ¼ 9� 10�4 (about 0.1% of the average

measured irradiance).

The stopping criteria can be obtained by discrepancy

principle and given in Eq. (21). The number of iteration

for r1 ¼ 5� 10�4 is 3 and for r2 ¼ 9� 10�4 is 18. The

estimated QðrÞ, DðrÞ and laðrÞ are shown in Figs. 6–8,

respectively. The average errors for the estimated QðrÞ,
DðrÞ and laðrÞ are calculated as ERR2 ¼ 0:29%,

ERR4 ¼ 5:47% and ERR5 ¼ 0:33%, respectively. This

implies that reliable inverse solutions can still be ob-

tained when measurement errors are considered.

9.2. Numerical test case 2

The parameters for the direct problem, the space and

time increments used in numerical test case 2 are taken

the same as were used in numerical test case 1.
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Fig. 7. The exact and estimated diffusion coefficient using in-

exact measurements in test case 1.
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Fig. 8. The exact and estimated absorption coefficient using

inexact measurements in test case 1.
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Fig. 9. The exact and estimated diffusion coefficient using exact

measurements in test case 2.
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The exact spatial-dependent optical absorption and

diffusion coefficients, laðrÞ and DðrÞ, for tissue are as-

sumed as the following step functions

laðrÞ ¼
2:0; 06 r < 1

3

5:0; 1
3
6 r < 2

3

8:0; 2
3
6 r6 1

8><>: ð27aÞ
DðrÞ ¼

2:0; 06 r < 1
5

4:0; 1
5
6 r < 2

5

6:0; 2
5
6 r < 3

5

8:0; 3
5
6 r < 4

5

10:0; 4
5
6 r6 1

8>>>>>><>>>>>>:
ð27bÞ

Test case 2 is a more rigorous examination since there

exist discontinuities for both optical diffusion and ab-

sorption coefficients. It is expected that the inverse so-

lutions are worse than test case 1.

When considering exact measurements for tempera-

ture and irradiance and following the similar procedures

as performed in test case 1, for g1 ¼ 3� 10�9 and

g2 ¼ 3� 10�10, after 10 and 213 iterations the functional

can be decreased to J1 ¼ 1:35� 10�9 and J2 ¼ 2:97�
10�10. The inverse solutions are reported in Figs. 9 and

10 for the estimated optical diffusion coefficient and

optical absorption coefficient, respectively. The average

errors for ERR1, ERR2, ERR3, ERR4 and ERR5 are

calculated as 0.022%, 0.045%, 0.0065%, 4.12% and

0.51%, respectively. Again, from Fig. 9 we learn that the

singularity for the estimated Dð0Þ is improved signifi-

cantly by using modified conditions. Next, when the

measurement errors for temperature and irradiance are

taken as r1 ¼ 6:24� 10�4 (about 1% of the average

measured temperature) and r2 ¼ 4:52� 10�4 (about

0.05% of the average measured irradiance), the number

of iteration to obtain the inverse solutions for

r1 ¼ 6:24� 10�4 is 2 and for r2 ¼ 4:52� 10�4 is 41. The

estimated DðrÞ and laðrÞ are shown in Figs. 11 and 12,
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Fig. 10. The exact and estimated absorption coefficient using

exact measurements in test case 2.
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Fig. 11. The exact and estimated diffusion coefficient using

inexact measurements in test case 2.
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Fig. 12. The exact and estimated absorption coefficient using

inexact measurements in test case 2.
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respectively. The average errors for the estimated DðrÞ
and laðrÞ are calculated as ERR4 ¼ 9:26% and ERR5 ¼
1:64%, respectively.
From the above two test cases we learned that an

inverse biotechnology problem in simultaneously esti-

mating the optical diffusion and absorption coefficients

of tissue is now completed. Reliable estimations can be

obtained when using either exact or error measurements.
10. Conclusions

The CGM was successfully applied for the solution

of the inverse biotechnology problem to estimate the

unknown the spatial-dependent optical diffusion and

absorption coefficients of tissue by utilizing simulated

temperature and irradiance readings. Two numerical test

cases involving different form of optical coefficients and

measurement errors were considered. The results show

that the inverse solutions obtained by CGM are still

reliable as the measurement errors are increased.
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